

Programa de la asignatura

TRABAJO GEOLÓGICO DE CAMPO (2920)

Curso: 2007 / 2008

PROFESORADO

Profesor/es:

ENRIQUE ARACIL ÁVILA - correo-e: earacil@ubu.es

FICHA TÉCNICA

Titulación: INGENIERÍA TÉCNICA DE OBRAS PÚBLICAS (TRANSPORTES Y SERVICIOS

URBANOS)

Centro: ESCUELA POLITÉCNICA SUPERIOR

Nombre asignatura: TRABAJO GEOLÓGICO DE CAMPO (2920)

Código de la asignatura: 2920 Tipo de asignatura: Optativa

Nivel / Ciclo: 1

Curso en el que se imparte: 3

Duración y fechas: Cuatrimestral - 2º Cuatrimestre

Créditos: 6.0

Créditos teóricos: 1.5 Créditos prácticos: 4.5

Áreas: INGENIERIA DEL TERRENO

Tipo de curso: Oficial **Descriptores:** Según BOE **Requisitos previos:** Según BOE

Idioma: Español

COMPETENCIAS TRANSVERSALES O GENÉRICAS

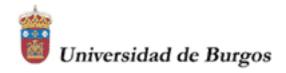
INSTRUMENTALES

Análisis y síntesis: 2

Organización y planificación: 3

Comunicación oral y escrita en la lengua nativa: 3

Conocimiento de una lengua extranjera: 3


Conocimientos de informática relativos al ámbito de estudio: 2

Gestión de la información: 3 Resolución de problemas: 3 Toma de decisiones: 3

PERSONALES

Trabajo en equipo: 3

Trabajo en un equipo de carácter interdisciplinar: 4

Trabajo en un contexto internacional: 2

Relaciones interpersonales: 3

Reconocimiento a la diversidad y la multiculturalidad: 1

Razonamiento crítico: 3 Compromiso ético: 2

SISTÉMICAS

Aprendizaje autónomo: 3

Adaptación a nuevas situaciones: 3

Creatividad: 3 Liderazgo: 1

Conocimiento de otras culturas y costumbres: 1

Iniciativa y espíritu emprendedor: 2

Motivación por la calidad: 2

Sensibilidad hacia temas medioambientales: 4

COMPETENCIAS ESPECÍFICAS

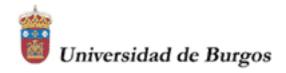
CONOCIMIENTOS DISCIPLINARES (SABER)

Proporcionar al alumno los conocimientos generales y la terminología básica necesarios para la interpretación y comprensión de la Geología en la Ingeniería Civil mediante el desarrollo de actividades prácticas que simulen problemas reales.

HABILIDADES PROFESIONALES (SABER HACER)

Orientar el desarrollo personal del alumno para que estimule sus habilidades y les prepare para la toma de decisiones.

ACTITUDES (SABER SER - SABER ESTAR)


COMP. ACADÉMICAS (SABER TRASCENDER)

OTRAS COMPETENCIAS ESPECÍFICAS

Concienciar al alumno de que las condiciones geológicas del terreno condicionan la óptima construcción y funcionamiento de las obras civiles como estrategia de motivación.

OTROS OBJETIVOS DE LA ASIGNATURA

Introducir la aplicación de la Geología a la Ingeniería Civil con el fin de asegurar que los factores geológicos que afecten al proyecto, construcción y mantenimiento de las obras de Ingeniería sean tenidos en cuenta e interpretados adecuadamente. Conocer el desarrollo moderno del manejo de las Ciencias Geológicas a la Ingeniería. Aplicación de métodos geológicos a problemas constructivos con

una valoración basada principalmente en la experiencia.

METODOLOGÍA Y RECURSOS PARA EL APRENDIZAJE

Clases prácticas (3 horas semanales), clases teóricas (1 hora semanal) y trabajos en grupo.

El principio metodológico utilizado es la actividad constructivista del alumno, que elabora su aprendizaje en base a la experiencia práctica adquirida en las clases.

BREVE DESCRIPCIÓN DE LAS ACTIVIDADES PRÁCTICAS

PRÁCTICA 1 Creación de un archivo de estaciones geológicas.

Elaboración de una ficha de captación de datos (fotografías y/o esquemas, descripciones, columnas, etc).

Trabajo en campo y en gabinete.

PRÁCTICA 2 Confección de un mapa geológico de un sector cercano a Burgos, con sus correspondientes anejos: memoria, cortes, columnas estratigráficas y fotografías y/o esquemas. Trabajo en campo y en gabinete.

PRÁCTICA 3 Elaboración de un mapa geotécnico a partir de la cartografía geológica anterior. Trabajo en campo y en gabinete.

PRÁCTICA 4 Levantamiento de una estación geomecánica y representación de sus discontinuidades sobre estereogramas.

Previsión de inestabilidades y su posible corrección.

Trabajo en campo y en gabinete.

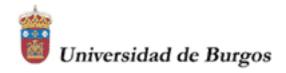
PRÁCTICA 5 Prospección de un área por geofísica eléctrica de resistividades.

Representación e interpretación de resultados.

Trabajo en campo y en gabinete.

SEGUIMIENTO DEL ALUMNO Y CRITERIOS DE EVALUACIÓN

Asistencia obligatoria a clases prácticas (3 horas /semana) y evaluación individual de dichas actividades.


Realización de un Trabajo de Grupo (3-4 personas/grupo) de cartografía geológica y reconocimientos de campo, con evaluación colectiva.

Examen teórico final para la evaluación del aprendizaje durante las clases teóricas (1 hora /semana)

BIBLIOGRAFÍA BÁSICA SOBRE LA MATERIA

Fundamentals of geophysics, *LOWRIE, W.*, Primera, 1997, Cambridge University Press, Cambridge Geological maps. An introduction., *MALTMAN, A.*, , 1998, John Willey and Sons., Chichester. Geological structures and maps. A practical guide., *LISLE, R.J.*, Segunda, 1995, Butterworth Heinemann Ltd., Oxford

Interpretation of geológical structures through maps., POWELL, D., , 1994, Longman Scientiphic

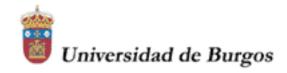
Technical., U.K.

Introducción a la cartiografía geológica, *RAMÓN-LLUCH, R. & MARTÍNEZ TORRES, L.M.*, , 1993, Servicio Editorial del Pais Vasco, Bilbao

Mapas geológicos. Explicación e interpretación., *MARTÍNEZ ÁLVAREZ, J.A.*, , 1991, Ed. Paraninfo., Madrid

BIBLIOGRAFÍA COMPLEMENTARIA

Geophysical logging for mineral and engineering applications, *HALLEMBURG, J.K.*, Primera, 1984, PennWell Books, Tulsa, Oklahoma.


Interpretation theory in applied geophysics., *GRANT, F.S. & WEST, G.F.*, Primera, 1965, McGraw Hill, New York

Tratado de geofísica aplicada, *CANTOS FIGUEROLA, J.*, Tercera, 1987, Ciencia 3 distribución, Madrid

RECURSOS DE INTERNET

OBSERVACIONES Y OTROS DATOS

Acceso a la web de la asignatura: http://www2.ubu.es/caict/ingterr

ESTRUCTURA DE CONTENIDOS (TEMAS)

TRABAJO GEOLÓGICO DE CAMPO (2920)

TEMA 1: Introducción a la Geología de Campo

- > Por qué es importante controlar la geología
- > Aspectos geológicos que influyen en la obrta civil
- > Litología
- > Textura (más o menos alterada, más o menos sana)
- > Fracturación (densidad, tipos)
- > Características intrínsecas (porosidad, densidad)
- > Incidencia de los factores geológicos en Ingeniería Civil
- > Incidencia de los factores geológicos en Ingeniería Civil
- > Meteorización de las rocas utilizadas en las obras públicas
- > Factores que intervienen en la meteorización. Grados de alteración
- > Riesgos de la falta de control geológico. Casos reales y ejemplos prácticos que pueden darse

TEMA 2: Tipos de trabajos de campo

- > Trabajos previos a la ejecución de la obra: Trabajos de escala regional y de detalle.
- > Trabajos de realización durante o posterior: Trabajos de detalle.
- > Solicitud de soluciones: 1 ó varios tipos de trabajo geológico.
- > Valoración si es mejor 1 ó varios trabajos diferentes. Si son varios, discriminación y orden de prioridades de aplicación
 - > Casos reales y ejemplos prácticos que pueden darse
 - > Solicitud 1 tipo de trabajo geológico concreto. Aceptación y valoración.
 - > Aceptación pero presentación de alternativas y/o mejoras y valoración

TEMA 3: Estudio de la superficie: Cartografía Geológica

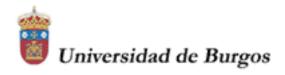
- > Introducción a la representación geológica
- > Agrupación de materiales geológicos
- > Metodología de confección de mapas geológicos: Documentación bibliográfica,

Fotointerpretación, Reconocimiento de campo, Cortes geológicos, Columnas estratigráficas

- > Presentación de resultados
- TEMA 4: Estudio de la superficie: Cartografía Estructural
 - > Análisis de discontinuidades
 - > Descripción cuantitativa de las discontinuidades (orientación, espaciado)
 - > Toma de datos y representación: La estación geomecánica, estereograma de polos, etc.
 - > Inestabilidades del macizo rocoso y métodos de corrección

TEMA 5: Estudio de la superficie: Cartografía Geomorfológica

- > Cartografía Geomorfológica: Geomorfología aplicada a la Ingeniería
- > Fundamentos de geomorfología
- > Análisis de cuencas de drenaje
- > Modelado de los interfluvios


TEMA 6: Estudio de la superficie: Cartografía Geotécnica

- > Usos del suelo
- > Factores geológicos de interés en ingeniería y sus problemas tipo: Litológicos,

Hidrogeológicos, Geomorfológicos, Procesos activos, Geotécnicos

> Metodología de confección de mapas geotécnicos: Documentación bibliográfica,

Fotointerpretación, Reconocimiento de campo, Prospección e investigación "in situ",

Representación.

TEMA 7: Estudio de la superficie: Cartografía Hidrogeológica

- > Unidades hidrogeológicas
- > Nivel freático
- > Inventario de puntos de agua

TEMA 8: Estudio del subsuelo: Prospección Geofísica

- > Métodos geofísicos desde superficie: Posibilidades, valoraciones, características
- > Métodos eléctricos (SEV, calicatas eléctricas, tomografía eléctrica)
- > Métodos electromagnéticos (convencionales, RADAR y V.L.F.)
- > Métodos sísmicos (sísmica de refracción)
- > Métodos gravimétricos (gravimetría)
- > Métodos geofísicos en sondeos: Diagrafías
- > Casos reales
- > Aplicación a la Ingeniería Geológica (obras lineales, túneles, edificación...)

TEMA 9: Estudio del subsuelo: Perforación de sondeos

- > Tipos de perforación y elección del método de perforación
- > Características de la perforación
- > Testificación geológica (testigos, ripios)

TEMA 10: Estudio en laboratorio: Análisis de muestras

- > Toma de muestras para análisis de laboratorio
- > En superficie
- > En testigos
- > Tipos de parámetros a determinar

PRÁCTICAS

- > PRÁCTICA 1: Creación de un archivo de estaciones geológicas. Elaboración de una ficha de captación de datos (fotografías y/o esquemas, descripciones, columnas, etc).
- > PRÁCTICA 2: Confección de un mapa geológico de un sector cercano a Burgos, con sus correspondientes anejos: memoria, cortes, columnas estratigráficas y fotografías y/o esquemas.
 - > PRÁCTICA 3: Elaboración de un mapa geotécnico a partir de la cartografía geológica anterior.
- > PRÁCTICA 4: Levantamiento de una estación geomecánica y representación de sus discontinuidades sobre estereogramas. Previsión de inestabilidades y su posible corrección.
- > PRÁCTICA 5: Prospección de un área por geofísica electrica de resistividades.

Representación e interpretación de resultados.